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1.  INTRODUCT ION

The description of the acousticaIMproperties of duct liners
depends on the measurement of properties in an impedance tube,
However, in practical applications, these linecrs are usually
‘mounted on a side wall of a flow duct, Thus, both the mean flow
and acoustic wave graze over the surface of the liner. Lester
and Pavrott [1,2] find that these acoustical linevs often act
differently in grazing incidence than one would expect from the
impedance tube measurements. The study of these differences is
hindeved by the lack of a simple technigque to expertmentally

determine the propevties of duct linevs in grazing flow.

This paper describes a stmple technigque to measure the
acoustical properties of duct liners in grazing flow. Tae tech-
nigue is developed explicitly for rectanqular ducts though it can
be applied equally well te cliveular and annular ducts,  The tech=-
nigque is to measure the axial wavenumber of the least attenuated
mode.,  This wavenumboer depends on the flow profile in the duct,
on the boundary condition, and on the acoustical propevties of _
the duct liner., Thus, the acoustical propertics of the liner can
be found by measuring the wavenumber and knowing the flow profile
and boundary condition. The technique will be introduced for
uniform flow ducts with point reacting liners, 1t is then
applied to bulk reacting liners with both rigid and limp wmaterial

structures., Finally the influence of shear flow is considered,

The acoustical properties of matervials ave usualiy measured
in an impedance tube,  An impoedance tube is a hbllow duct termin-
ated by a duct tilled with the unknown aroustical material. A
sound wave impinges on the acoustical material and is veflected
back, By measurinag the intecference pattern betwveen the incident
and veflected sound waves the acoustical propervties of the
material can be determined. 1€ the material is locally reacting,

a single measurement of the intevfevence pattevn is needed to



find the admittance at each frequency. If the material is
nonlocally reacting, two measurements must be made at each
frequency. Two measurements are needed because bulk reacting
materials are described by two parameters: the propagation
constant and the plane wave impedance.

Three impedance tube techniques exist for measuring the
acoustical properties of bulk materials. Scott [3] proposed a
direct method for cases where the length of the bulk reacting
material is effectively infinite, It is not precisely an
impedance tube measurement because the propagation constant is
determined directly by measuring the phase and amplitude of the
pressure wave with a microphone traversing the length of the bulk
material. The plane wave impedance is measured directly by
simultaneously measuring the acoustical pressure and velocity at
the surface of the bulk material. Dinardo (4] and Romero [5]
propose an:impedance tube measurement called the two~cavity
method. A finite length of bulk material is terminated first by
a hard wall and then by a quarter wavelength resonator. The
propagation constant and characteristic impedance of the material
are deduced from a set of transcendental equations. Ferraro and
Sacerdole {6] propose an impedance tube measurement known as the
two-thickness method., Measurements are made using two lengths of
bulk material terminated by a hard wall., Again, the acoustical
properties of the bulk reacting material are deduced from a set
of transcendental equations,

An experimental comparison of these three techniques is
given by Smith [7]. There are two advantages to the two-
thickness and two-cavity methods. First they avoid the need for
measurements in the bulk material. Second, they give the acous~-
tical properties by manipulation of simple transcendental equa-
tions. These advantages are retained in the method proposed
herein. . '



Consider a two-dimensional duct with a hard wall on one side
and a soft wall treated with an acoustical material on the other
side. The axial wavenumber for each mode propagating in this
duct depends on the flow profile, the boundary conditions, and
the acoustical properties of the liner materiél. Hence, by
measuring the amplitude and phase of the least attenuated mode
the liner properties can be deduced. The axial wavenumber can be
determined from a pressure measurement made on the hard wall side
of the duct, For point reacting materials a single measurement
at each frequency is sufficient. For bulk reacting materials two
measurements at each frequency are needed. These two measure-
ments can be done with two thicknesses of the liner material, or
by placing first a hard wall and then a guarter-wavelength
resonator on the exterior, or’with two duct widths. The
important aspect is to create conditions so that two different
values of the axial wavenumber are measured.

The method will be described in stages. First, it is
described for point reacting liners used in uniform flow ducts.,
The influence of the boundary condition, the method for the phase
and attenuation measurement, and special problems associated with
the axial extent of the liner are discussed. Next, it is applied
to bulk reacting liners; rigid liners are considered first, limp

liners are considered next. Finally, the influence of shear in-
flow is discussed.

Two descriptions of bulk reacting materials are possible,.
One approach, which we will not use, it to «ttempt to describe
the material microscopinally and determine sound propagation from
first principles. Simplified models such as tubes {8}, parallel
fibers [9,10], and arrays of spheres [11] have been proposed.
Ingard [12) points out that "If in such studies empirical para-



meters are introduced, their value is questionable in comparieson
with what can be learned from dimensional analysis or from a
macroscopic phenomenological approach.®

This macroscopic approach is described by~1n§ard {12},
Zwicher and Kosten (13}, Beranek [14,15], and Tack and Lambert
{16]. The approach is to write the mass, momentum, and compres-
sibility equations for the air within the duct liner. These
equations debend on macroscopic properties such as porosity,
density, and specific flow-resistivity of the material. A wave
equation is derived from these fundamental equations. The acous-
tical description of the waves depends on the propagation con-
stant and characteristic impedance which, in turn, depend on the
macroscopic properties of the material. The experimental tech-
nique described herein is one that relates the axial wavenumber
in the flow duct to the propagation constant and characteristic
impedance in the duct liner. The explicit relation is bhased on
the macroscopic description of the liner. However, the method
can be used equally well if other descriptions of the liner are
used, provided that they admit wave-like solutions subject to a

dispersion relation and a characteristic impedance.
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2, THE UNIFORM FLOW DUCT WITR A POINT REACTING LINER

Consider a sound wave propagating in a two~dimensional
duct. Let x be the axial direction and y be the transverse
direction. at y = 0 let there be a hard wali, and at yv. = 1 let
there be a point reacting liner characterized by an admittance
a. Between the wall the motion of the air is described by the
linearized mass and momentum conservation equations.

~

D E
P0 pr u t Vp = Q (1)
g€ p + poVeu =0 (2)
where
D _ 3 .Mcd
pe - 5t %) 3)
R = e ' (4)

Here, p p and u are the first order perturberations in pressure
density and velocity, Mc is the mean flow velocity in the axial
direction, pg the mean air density, and ¢ is the adiabatic sound
speed. We will search for.propagating waves in the axial direc-

) ' . ik, x-wt)
tion. Hence, assuming all quantities vary as e gives
ikpgc(l-K M)u = ¥p (5)
i X(1-K M)p = pgc¥.u ‘ (6)
" which, in turn, gives the wave equation
1 3%, (1=K M)2 = K 2| p = 0 ‘ (7)

k? ay?
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where K, = k,/k. ‘

The sol on can be constructed from elementary solutions
Lk, x+tk y-uwot)
proportional to e Y . Thus, the dispersion relation

is
- 2 _ 2 2y = )
(1-K M) (X, +xy ) 0 , (8)

In particular, we must choose a solution that satisfies the zero
normal velocity requiraoment at y = 0.

ikxx .
P = py coskyye (9a)
ikxx
u, = ug. coskyy e (9b)
ikxx
uy = uoy 51nkyy e (9¢)
The relation between pyg, Yok and Uoy is fixed by the momentum
equation. Thus
i {1-K_M)K (10a)
= - a
pcu o X X
Po
pt = =i(1-K_M)K (10b)
P oy Y

The boundary condition at the soft wall is the particle
displacement condition. This condition assumes an infinitesi-
mally thin layer of still air just above the soft wall., The
particle displacement (£) across the shear layer separating the
still and moving air is the same. Here, the subscript £ indi-
cates a quantity in the moving fluid and the subscript w indi-

cates a quantity in the still air just above the soft wall.
Thus, ’
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= ) : . 1
Ef Ew . , (11)
From the momentum equation it follows that in the moving fluid
uyg = ~ik{1-K M}, and in the still fluid just above the soft
wall uyw = 1k€w. Thus, at the wall, (l-KxM)uyw = uyf. In turn,
the momentum condition gives '

ikegc,,_ - _9p
(1 KXM)UYf = 3y °

Hence, the admittance condition gives

pgCu
a = B y =1
1 Ip/3y l
(l—KxM)‘ P y =1
or
Ry tan(RykL) = i(l—xxm;Za ' (12)

Recall that the dispersion relation gives Kyz = lmez . Thus, if
we could measure Kx, and knowing k, L, and M, we could uniquely
determine the admittance a at any frequencyAm = ¢k. For point
reacting liners only one measurement needs to be done because

there is bnly one unknown, the admittance a, in the character-
istic equation.

Now consider the problem of measuring ky . For the moment,
assume the duct is infinitely long and only the least attenuated
wave is propagating. Furthermore, assume that a pressure mea-
surement can be made at any location x on the hard wall y = O.i
This is an advantageous location because it is nonobstiructive and
also at a pressure . antinode for all modes.  Let the constant
Py = |p| el in Eq. 9. There are two methods to determine the

real, k., ‘and imaginary, k;. portions of the axial wavenumber Ky
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The first method is to define p, and P, where

-k.xX
i

il

P, = OIT P(t) cos wtdt Ip| e

cos(er+¢o}~ e

1 sin(er+¢g)

Bl Ml

ol e

T .
Py = of P(t) sin wtdt

It follows that the amplitude and phase are

A(x) = 1n (pa2+pb2)>1’2/pref
(l4a)
- ln(lp‘/pref)—kix
-1
$(x) = tan (pb/pa)-
(14b)

"

$o+k x

Thus the amplitude and phase vary linearly with distance. Henue,
k. and k; may be found from the slopes of the experimentally
determined amplitude and phase measurement,

The second method is to determine the temporal cross—- .
correlation between two points separated axially. Let

Riz(t) =2 [T pi(t)pa(triat

(15)
“ki()(z"xl)

Ipl2 e cos(k (x2-x1) - wt)

Now let R;, be normalized to the self correlation at point 1 to
find

-

- Ri2 (1) ~k;(x2-x1)
Rja2{1) = W = e }COS(kr(XZ-Xl)‘wT) (16)

Thus k, is found by noting the phase shift of R, and k; by
noting the amplitude of R;,.

Finally, consider the practical problem that the length of
lined duct is usually finite. There are two problems: the



influence of high order modes and the influence of reflections.
First consider the problem of high order modes. Let the duct be
made of two parts. On one side is a hard wall duct in which a
sound source is located. On the other side let one wall of the
duct be lined. At the juncture there will be a reflected wave
and a transmitted wave in the lined section (for the moment we
neglect any reflected waves in the lined section). This trans-
mitted wave will be éomposed of higher ovder modes as well as the
least attenuated mode., These high order modes decay very
rapidly. Thus, a plot of amplitucde vs distance from the juncture
will reveal a region of rapid decay, where the high order modes
are influential,.and a limit region controlled by the propagation
of the least attenuated wave. The least attenuated wavenumber
can be only be measured accurately in this limit region, How-
ever, the region is determined experimentally as indicated above,
Furthermore,lthe region of influence of the high order modes can
be diminished by making the duct width smaller. This cbservation
follows by noticing in a hardwall duct the high order modes
attenuate at a rate k= i (an/L)2-k2 172, yhere L is the duct
width, 1In general, only use the technique below the first cutoff
frequency for a hard wall duct of identical width to the test
section.

Now consider the problem of reflectiors in the lined sec-
tion. Let the duct be made of three parts. On elther end‘is a
semi~-infinite length of a hard wall duct. 1In the center is a
limited region of duct having one wall lined. Near each juncture
there will be a limited region where high order modes are influ-
en&ial. This region is determined as befure. 1In addition there
will be a reflected wave from the second junctioh. This reflec~-
ted wave will be smaller than the incident wave in the lined sec-
tion., In addition, it will be attenuated as it travels back to
the inlet junction. If the liner length is suificiently 1long,
the reflected wave will have no influence on geaneration of sound



in the lined section. 1In effect, the lined section is semi-
inrin.te. To determine experimentally if this condition is
reached, one must test { O liners of different axial lengths. If
the measured conditions at the inlet juncture are the same for
both lengths, then one can conclude that the reflected wave' is
not influential. At some d‘stancé away from the junctuce the two
measurements will begin to differ. Where they begin to differ is
the limit of the range in which k, can be measured accurately.
This will be some short distance away from the exit juncture of
the shorter lined duct. This region of influence will be the
same for both the short and long lined duct. Hence the measure-~
ments using the longer lined duct can be used to determine.kx.

Of .course it is always possible to solve the equation of
motion exactly and fit the observations directly to some mathema-
tical model. However, that approach lacks the simplicity of a
direct measurement of the axial wavenumber in a lined duct con~
taining only the least attenuated wave. This least attenuated
wave depends directly on the flow profile in the duct; the boun-
dary condition at the wall, and the acoustical properties of the
lined material. Presumably, if a clean measurement is made, the
expevimenter will be better able to determine which of these
three assumptions is incorrect, should discrepancies arise
between the predicted and observed values of the axial wave-
number.

10
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3. EX"ENSION OF THE HETHOD TO RIGID RULK REACTING LIRERS

Consider the liner by describing its macroscopic propertics.
Let the liner be isctropic and let the materiai structire of the
liner be rigid. Furthermore., assume there is no mean fla@ in the
liner. In the lined material, the linearized mass and momentum
conservation equations are

Pogh s+ r ug Vps = 0 ' (17)

s + o T = 0 (18)
where

%%Z = Csz (i

Here pg and Pg and u, are the first order perturbations cf th»
pressure density and velocity in the ;ined material, ? is the
mecn air density, g is the structure factor, h is the porosity,
and c. the complex phase velocity. Note that we use the avarage
particle velocity Gs in the porous space and not the volume velo-
city which is hUs. The subscript s will be used to identify
acoustic qualities in the lined material. The inertial mass den-
sity is larger than the average mass density poh by the strurciu-e
factor g which is normally between 1.2 and 2. The porosity h io
the fraction of the liner not occupied by the mar2rial structurc
and is normally between 0.85 and 0.98 for Sractical acoustical
materials. The flow resistance r is def ..ed by tne steadv state

relation rﬁg = —5ps. The complex phase velocity c_. accounts for

s
the nonadiabatic compression of air in the porous material due to

heat tranfer from the entrapped air to thz2 material structure.

We will search for propagating waves in the axial direction.

i(kgy % -wt)

Hence, assum.ng all quantities vary as e gives

11
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K 2
. s ~ _
'lkpo?gh —uZ Vg =V Pg ' (20)
ik gh =~
PoC %‘!ps = Veug | ' | | (21)'

where the nondimensional quantities Kg and w are given by

Cg. 2 i
= gh (5°) (22)

2 ir .
n {1 + E;;EEE-} (23)

These equations give the wave equation

(]
1

i

2
KS

2 .
.__]_'. ___Ea s (KZ - KZ ) p = 0 (24)
kz 3y2 S SX S
where Kgy = ksx/k, The solution can be constructed from
i(ksx x + ksy y - mot)

.

elementary solutions proportional to e
Thus the dispersion relation is

2 . 2 2y =
Kg? = (Kgy? + Kgy2) = 0 (25)

Sy

where KSy = ksy/k.

The possible values of Ksy are determined by the boundary
conditions. We will show how to deduce the propagation coastant
kg and the plane wave impedance ps/(hpocus) = p?/g from the axial

wavenumber measured on the hard wall side of the duct{._

There are two boundary condltions.‘ One occurs at the junc-
turé of the air within the duct and the liner material, the other
depends on how the liner is terminated in the transverse direc-
‘+tion, Three terminations are explored in detail.

The first termination is none at all. That ‘s to say the
transverse extent of the liner is so great that the sound only
propagates away from the juncture with the duct. Here

12



Ps = Pgo © ) ' (26a)

ilk_ x +k__y)
- sX sy
Ysx Ysxo © _ \ (26b)
ilk_, x +k__y)
- - a SX sy
usy usyc e ’ (26¢)
The relation between the Pso' sto and Usyo is given by the
momentum equation, Thus '
P so u? .
?_cu = gk Kg Kgx : (27a)
0 SXQ _
Pso n2 . o
——— = K. K (27.)
pocusyo gh “s “sy

Now consider a liner of depth A terminated by a hard wall.

At the wall y = L + A the ncormal velocity usy must vanish. Thus

iksxx
Pg = Pgot0s(kg (y=(L + A)))e | (28a)
iksxx
Ugy = usxocos(ksy(y~(L + A)))e (28b)
ik_ X
= ; - SX s
gy = Ygyo s;n(ksy(y (L + A)))e (28¢)
where‘pso/pc Uovo is the same as before and
Pso u2
————— = -] K_K : , (29)
. Po%sy0 gh “s'sy

Finélly, consider a liner of depth A terminated by a quarter
wavelength resonator. At the termination y = L + A the pressure
must. vanish. Thus

ik . x

pS= Psosin ksy (y;(L +4A)) e SX (30a)

13
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. iksxx

Ugy = U, sin ksy(y—(L + A)) e (30b)

‘ iksxx v -

.usy— usyocas Ksy(y—(L + 4)) e {30¢c)

where pso/pc Useo 18 the same as before and
Peo 2
— = § = K_ K (31)
pocusyo gh “'s sy .

Again, the boundary condition at the soft wall is determined
by the particle displacement condition. Again, we assume an ‘
infinitesimally thin layer of still.air'jdst above the soft wall.
The particle displacement across this sheaf layer is gf = Ew as
given in Egq. 1l1l. Now the displacement in the linear equation is

-given by

L
1

L o (32)

thus:

uy(x, L-6,t) = h(l—KxM) usy(x,L—G,t) (33)

To satisfy this requirement we must set Ky, = K In addition,

x.
continuity of pressure requires that

p(le—spt) = p(er+6lt) (34)
Taking the ratio of Egs. 33 and 34 gives

r = 3 - 2 .
K, tan (R kL) = i(1-K m)? g (35)

14
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and
value , termination
(2K,
L.M_,:}X none
O K;
po= < i -»—~1— tan (K ka) hard wall (36)
()1\"‘
K
-1 ~u—~«x got(K kA) quarter wave-
K q9 Ki length vesonator

The first two forms of # in Baq. 36 are also given by Tack and
Lambert (161, Recall that the disperson velation glves

hl

b 4 I3 s D

K 2= (1-K ’) and that K 4 = (R “-K 2 )y = (KR ® - K. ) . Hence,

Y sy SX B X

just as hutomv, a mowuntomont 0( the axial wavenumber reveals the
1iner c\*..'u"c‘.a_‘i'm‘i:ﬂic:'.. fecaune we wish to extract two quant i-
ties, ¥ and q_lw', tn general two peasuvemnents awast bo made.

8

These two measutrenents must yield two suffictently ditftevent

values of K _, which we call K and K .
X X1 X

Given Kx the left hand side of oqnationsjﬁ s determined,
The right hand side contatns the unknown R. By takina the vation
of two successive measurements of p the value w'/q can be can-
celled and a transcendental caquation in this unknown value Ka

rosult s,

If two duct widths Ly and L, ave used, and the linev is
oftfectively intinite in the transverse divection, then this

cquation is

{1-X 2yt 2 pan (1-K Iy ¥ ki, K ? -K Yoo
xc‘ X\ “ xt
- - : p< 2 (\;7)
(1-K )14 tan (1-K Mok, S
X2 X ‘ t X,

15
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If the duct width is constant and two liner depths

4, and 4, terminated by a hard wall ave used, then this equation
~is

- 231 r2 - 2
(} K Pran{(1-k_;2)kL)

R L2 /2 K
(1=K ,2)! Zran((1-k ,? kL) |
(K 2 -k xz)lkztan(kb (K 2-K 12)) (38)
s X 8 X

=

2 . 241 /2 2 . 2
(Ks sz ) tan{kA(Ks sz )

If the duct width and liner depth are constant, and the
lin2r is terminated first by a hard wall and then by a quarter
wavelength resonator, then this equation is

- g 231 .2
(1 hxl 1A

fan“l - K x?)kh)

TR W24 - 2\
(1 hxz ) tnn((l sz )kh)
(39)
¢ ¢ o ke 231 g2 ;2 o 2
(hs hxx ) tan(kA{hS le ))

(K2 -~ K )72 cotfkalK 2 - K2 )
s ¢ ( ( X3 )

In each casce the left hand side is known and the right hand
side depends only on the unknown Kq. Given Kq, one can back
substitute into the original equation to find u?/q.

The most advantageous technique is to use two liners that
are effectively infinite in the transverse divection. The reason
is that it results in an equation for Kd that can be solved alge-~
braically., To determine whether or not a liner is effectively
infinite, simple increase the liner depth until Kx does not
change anymove.

16



ORIGINAL PAGE I3
OF POOR QUALITY

4. EXTENSION OF THE METHOD TO LIMP BULR-REACTING MATERIALS

Consider the possibility of motion in the solid material

which forms the acoustic liner. The bulk mass density of the
liner p, is

p1 = hpot+(l-h)o
{40)
ol (l—h)pm
where the subscript m refers to the material properties, and the
subscript s to the properties of the entrapped air. The motion
of the air and material are coupled through the momentum équation

au
= ——ﬂ ~ -~ \
0 Py 3¢ ¢ r(um us) (41}
aﬁq ..
-Vps = pggh 5t + r(us—um) (42)

In the momentum equation for the material structure, we have
explicitly assumed that its motion is due only to resistive
action of the entrapped air as it moves past the surrounding
structure at a rate Gs—am' This is not the only possibility.
The structure also responds to the surrounding pressure gra-
dients, and to its internal stiffness. 2Zwicker and Kosten point
out that even for zero resistance, coupling between the structureb
and entrapped air is possible by virture of the in:a2rtial coupling
indicated by the g factor. However, we wish only to illustrate
how additional material effects alter the calculations described
herein. In keeping with this aim we limit our attention to
simple resistive coupling, From Eqs. 41 and 42 we find

u

mo_ o r
u_  r-iwp,
S (43)
1
= I—l‘m;woi

17
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where wg = (r/pl). At low frequencies w/wy ~ 0 and um/us = 1,
That is to say, the material structure moves in phase with the
acoustic wave. At high frequencies um/us = ¢r/-iwp;, il.e., um'is
90° out of phase with ug and its amplitude is in the ratio of
wg/w. This ratio can be reduced to zero as w is increased
without limit. Thus, if the materiél properties are known'

beforehand, a decision can be made as to the influence of the
material motion, '

Given the ratio um/us, we can derive the modified momentum
relation for the air within the porous material
A . :
~Vp = pogh 3= + oug ' (44)

where ¢ = ~iwp,r/(r-iwp;). Thus, wherever r appears in previous
results, o must now be used. The major change is in the
expression for Kg, which is now

2 = 2 _do__ | ' |
Ks ps (1 * kpocgh) (45)
Ingard [12] points out that the effective resistance o can be

described as a flow resistance r in perallel with the structural
mass density pj.

There is an additional change that n1eeds to be made. This
change is to include the effects of the nmotion of the structural
material on the boundary condition. Again, we assume an infini-
tesimally thin layer of still air at the soft wall. Mass
continuity requires that

(Cw—ﬁm) = h(£s~€m) | ‘ (46)

18
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Noting that Em/es = um/us in the structural material gives
Ew = h(l+e)€s
where

. o l-h 1
h

(1-iw/wg)

The change in the displacement condition alters the character-
istic equation to

K, tan(K kL) = i(l—xxm)2(14e)8 (47)

The expression for B8 remains the same as given in Eq. 36. Thus,
even if the motion of the material becomes important, the same
techniquesvmay be used to discover the acoustic properties of the
material,

19
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5. APPLICATION TO SHEAR FLOW PROFILES

Consider the effect of shear flow in the duct. Let the mean
filow in the axial direction depend on the tansverse coordinate,

V{y). The linearized equations of mass and momentum continuity
are

D ~ ~
D 3 9p _

Po pE Uy t Uy 3y vV + 3y 0 (49)
D_ 3P

Po 3t Uy + 3y = 0 (50)

where the adiabatic compressibility 3p/3p = c? holds and the

convective derivation gf = %F»+ v %; now depends on the trans-

verse coordinate y. Assuming all quantities vary as

i(k, x-wt)
e - gives

~

ik (l—KxM) p =pgc V ¢« u - (51)

2 y-ix_vp (52)

i k pgec (l—KxM) Uy + uy 3y x

i - 1 = EE-
i ko c (1-K M) uy =35 (53)

where M is a function of y. The wave equation can be derived

. D D ~ 3V 3
using the commutation relation (V PE "~ B VY u = 3; W uy and
the momentum relation uy = %5 / (i k pge (I—KRM)). Thus, we

recover Hersch and Catton's (17} results
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2 K , :
=3zp X _3_?‘}22 2 _ 2 _ w2
0 ay? * (T=x_M) 3y 3y +k [(1 K M) Kx] p “(§4)

Because this equation is an‘oréinary differential equation we can
use the Runge Kutta technique tb develop a numerical eigenvalue
equation. Mungar and Plumblee [18] use this approach to study
annulér ducts, here we apply their technique to two-dimensional
rectangular ducts. At ‘

2 'Kx aM

aly) = TRw(Yy 3y (5a)
X .

b(y) = (kL)? [(1-xxn)2 - xi] (55b)

and introduce the column vector f with P and 3P/3Y as elements:

f;=?
f2 = %% (56)

The second order wave equation can be rewritten as two coupled
first order equatiohs

AR o

or, equivalently

s_

3y £ = [F}] £ | A : (58)

where [F] is the matrix operation defined by Eg. (57). The
generalized Runga Kutta solution is to divide the duct width into
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n subsections of length q = L/n. The solution at the j+lth point
is related to that at the jth point by the rule.

fj+1 = fj + % [my + 2my + 2m3 + my ] S (59}

where

ml=F(y.’ f-)

) J
_ + g =t
mZ"F'(Yj Z'fj Z)A
q am,
my = F (y; + 3, £5 + —)

J 2
m, = F (yg + 3 £5 + qmy)

Each step is a linear transform of the form

-~

Eia E. (60)

which can be combined to yield

- n-1 { ] - (
£ = Jif T. fo 61)
n 3=0 3
= [T] %o

where [T] is the transfer matrix. This matrix is uniquely
defined by the function M(y) and the constants K, and kL. As an
eigenvalue problem, Ky is the unknown parameter which is adjusted
to satisfy the boundary conditions. 1In the application progosed
herein, K, is -the measured axial wavenumber which is used to find
the boundary conditions. This characteristic equation is found

22



ORIGINAL PACE 1B
OF POOR QUALITY

by noting (2p/3y)/p = By at one wall and By at the other. Hence,
eliminating 3p/3y in Eq. (61) gives

0 = {(Tll + By Ty2) - BN (T4 + By Tzz}} Po o (62}

'For a hard wall at the point y = 0, we have By = 0. For the
‘soft wall at y = L = ng, we must again assume an infinitesimal
layer of still air near the wall. Pressure and particle dis-
placement are maintained across the layer, From the particle
displacement condition, the acoustic velocity in the transverse
direction is determined as before. For a point reacting liner
(3p/ay)/p = (l-KxM)2 poc(u/p), where, at the wall, u,/p is equal
to the admittance a. For a bulk liner the velocity in the still
air at the wall must again be related to che velocity in the bulk
liner by the rule uyw = uys h(l+e), where h is the porosity
~and e the factor account'ng for the motion ¢f the material,
Hence, the eigenvalue equation is

H

11 @ for point reacting liners

12

|

1
k

=

= i(l—-KxM’.L))z{
(14e)8 for bulk reacting liners

(63)

The factor B is given in Eq. (36). Note that for uniform mean
flow the factor T,,/kT;, is given explicitly as Ky tan (KykL).
For shear flow (T;,/kT;,) must be determined numerically from the

measured values kL, K., and M(y).

" If the flow is not two-dimensional, then the above
mathematical technique cannot be used. 1In particular, if the
axial velocity depends on both transverse ccordinates V(y,z),
then the ordinary differential equation in y becomes a non-
separable paréial differential eguation in y and z, Two
additional correction terms appear in Eq. (54): 32p/222 and
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[2k,/(1-k M)] [(aM/32) (2p/3z)]. An experimental test is to
determine what extent p and M depend on the other transverse
coordinate. For the pressure measurement, this can be done on
the side of the duct with a probe flush-mounted on the hard wall,

An alternate experimental technique is to perform the
measurement in an annular duct. The factors a(y) and b(y) are
changed to functions of the radial coordinate as indicated by
Mungar and Plumblee [18]. The hard wall at y = 0 is replaced by
an interior circular cylinder at r = ry. The soft wall becomes
the exterior circular cylinder. For point reacting liners the
admittance is defined as before. For bulk reacting liners the
factor 8 may be redefined by replacing the .xponential and
trigonometric functions of the transverse coordinate with the
abpropriate Hankel and Bessel functions of the radial coordinate.
In addition, the test must be done so that there is no azimuthal
mean flow on pressure variation.
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6. CORCLUSION

A method to determine the acoustical propercvies of both
locally and nonlocally reacting acoustical materials in grazing
flow is described. The methoed is to measure the axial wavenumber
k/x in a flow duct. Details are presented for a two-dimensional
duct lined on one side with a bulk reacting liner and on the
other with a hard wall, though the technique also applies In
cylindered and annular ducts. Because the axial wavenumber can
be found from pressure measurements on the side of the duct, it
should be easy to implement in the laboratory. Sample calcula-
tions have been illustrated for finite thickness lihers back:d by
a hard wall or by a quarter wavelength resorator (2 soft wall)
and also for the special case when the liner may be rvegarded as
infinite. The effects of mean flow and cshear flow have also been
considered. Furthermore, the influence of the motion of ths
material matrix foraing the liner has been considered in the
special case when liner stiffness can be neglected.

For point reacting liners the acoustical material is char~-
acterized by its admittance. Because one parameter descrikes the
material, only one measurement must be done at each frequency.
Bulk reacting liners are described by the propagation constant
Kg s and plane wave impedance 2. Because two parameters must be
determined, two measurcments mist be made at each frequency.
These can be done with ducts of two widths, with two thicknesses
of liner material backed by & hard wall, by a single thickness of
liner material backed by a hard wall and quarter wavelength
resonator, or to change condition by any permutation of the
above,

- The important point is to provide sufficiently differenc
experimental conditions so that two significantly different

values of the axial wavenumber are measured,
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